Multi-object aerodynamic design optimization using deep reinforcement learning
نویسندگان
چکیده
Aerodynamic design optimization is a key aspect in aircraft design. The further evolution of advanced derivatives requires powerful toolbox. Reinforcement learning (RL) tool but has rarely been utilized the aerodynamic It can potentially obtain results similar to those human designer, by accumulating experience from training. In this work, popular RL method called proximal policy (PPO) proposed investigate multi-object optimization. By observing performances different airfoils, PPO updates reasonable generate optimal airfoils single step. Pareto problem with constraints, only 15% computational time non-dominated sorted genetic algorithm (II) achieve same accuracy. testing show that agent learns ∼4.3%–10.1% improvements performance compared baseline.
منابع مشابه
Multi-Objective Deep Reinforcement Learning
We propose Deep Optimistic Linear Support Learning (DOL) to solve highdimensional multi-objective decision problems where the relative importances of the objectives are not known a priori. Using features from the high-dimensional inputs, DOL computes the convex coverage set containing all potential optimal solutions of the convex combinations of the objectives. To our knowledge, this is the fir...
متن کاملMulti-Agent Deep Reinforcement Learning
This work introduces a novel approach for solving reinforcement learning problems in multi-agent settings. We propose a state reformulation of multi-agent problems in R that allows the system state to be represented in an image-like fashion. We then apply deep reinforcement learning techniques with a convolution neural network as the Q-value function approximator to learn distributed multi-agen...
متن کاملHierarchical Object Detection with Deep Reinforcement Learning
We present a method for performing hierarchical object detection in images guided by a deep reinforcement learning agent. The key idea is to focus on those parts of the image that contain richer information and zoom on them. We train an intelligent agent that, given an image window, is capable of deciding where to focus the attention among five different predefined region candidates (smaller wi...
متن کاملOn-line Building Energy Optimization using Deep Reinforcement Learning
Unprecedented high volumes of data are becoming available with the growth of the advanced metering infrastructure. These are expected to benefit planning and operation of the future power system, and to help the customers transition from a passive to an active role. In this paper, we explore for the first time in the smart grid context the benefits of using Deep Reinforcement Learning, a hybrid...
متن کاملAerodynamic Design Optimization Using Genetic Algorithm (RESEARCH NOTE)
An efficient formulation for the robust shape optimization of aerodynamic objects is introduced in this paper. The formulation has three essential features. First, an Euler solver based on a second-order Godunov scheme is used for the flow calculations. Second, a genetic algorithm with binary number encoding is implemented for the optimization procedure. The third ingredient of the procedure is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: AIP Advances
سال: 2021
ISSN: ['2158-3226']
DOI: https://doi.org/10.1063/5.0058088